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Abstract
The Fermi-surface topology of the organic superconductor λ-(BETS)2GaCl4
has been determined using the Shubnikov–de Haas and magnetic breakdown
effects and angle-dependent magnetoresistance oscillations. The former
experiments were carried out in pulsed fields of up to 60 T, whereas the
latter employed quasistatic fields of up to 30 T. All of these data show that
the Fermi-surface topology of λ-(BETS)2GaCl4 is very similar to that of
the most heavily studied organic superconductor, κ-(BEDT-TTF)2Cu(NCS)2

(BEDT-TTF ≡ bis(ethylene-dithio)tetrathiafulvalene), except in one important
respect: the interplane transfer integral of λ-(BETS)2GaCl4 is a factor ∼5 larger
than that of κ-(BEDT-TTF)2Cu(NCS)2. The increased three-dimensionality
of λ-(BETS)2GaCl4 is manifested in radio-frequency penetration-depth
measurements, which show a clear dimensional crossover in the behaviour
of Hc2(T ). The radio-frequency measurements have also been used to extract
the Labusch parameter determining the fluxoid interactions as a function of
temperature, and to map the flux-lattice melting curve.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

There is considerable current debate over the nature of superconductivity in quasi-two-
dimensional (Q2D) crystalline organic metals [1–4]. The most heavily studied members of
this family of materials are the κ-phase BEDT-TTF salts (e.g. κ-(BEDT-TTF)2Cu(NCS)2)
[1]. Whilst nuclear magnetic resonance [5], penetration-depth [2], tunnelling [4] and other
experiments [1] appear to suggest that the superconductivity in these salts may be d-wave-like
and mediated by spin-density-wave-like fluctuations, some doubts have been cast by recent
controversial specific heat measurements, which may suggest that the order parameter does
not possess the required nodes [3]. Several theories [6–9] stress the importance of the details
of the Fermi-surface topology in providing suitable prerequisites for superconductivity; if the
Fermi-surface geometry and interactions are altered slightly, it appears that BCS-like s-wave
superconductivity may be the dominant low-temperature ground state [1].

Clearly, it is of importance to study organic superconductors with slight variations in
Fermi-surface topology so that the effect on the superconducting ground state can be assessed.
In this paper we therefore report magnetotransport and radio-frequency penetration-depth
measurements of the superconductor λ-(BETS)2GaCl4. Shubnikov–de Haas oscillations,
magnetic breakdown and angle-dependent magnetoresistance oscillations indicate that the
effective masses of λ-(BETS)2GaCl4 and much of the topology of its Fermi surface are similar
to those of the most heavily studied BEDT-TTF superconductor, κ-(BEDT-TTF)2Cu(NCS)2.
However, the magnetoresistance close to θ = 90◦ implies that the interplane transfer integral
in λ-(BETS)2GaCl4 is approximately five times larger than that in κ-(BEDT-TTF)2Cu(NCS)2,
suggesting that λ-(BETS)2GaCl4 is less two-dimensional. This increased dimensionality is
manifested in the superconducting properties of λ-(BETS)2GaCl4; a clear two-dimensional–
three-dimensional crossover is seen in the temperature dependence of Hc2. We have also used
the radio-frequency measurements to extract various parameters related to the interactions
between the fluxoids and to reveal the melting of the vortex solid.

2. Background information

When the innermost four sulphur atoms of BEDT-TTF [1] are replaced by selenium to produce
BETS (where BETS stands for bis(ethylene-dithio)tetraselenafulvalene), electrocrystallization
gives rise to a range of charge-transfer salts with notably different properties compared to their
BEDT-TTF counterparts [10–13]. Salts of the λ-phase morphology are currently unique to
the BETS series, and λ-(BETS)2GaCl4 (Tc ≈ 5 K) remains the only superconducting BETS
charge-transfer salt found thus far [12, 14].

Crystals of the λ-phase exist in the form of needles with the long axis of the needle
corresponding to the shortest lattice vector c [11, 12]. At first sight, the crystal structure
looks quasi-one-dimensional, with the BETS molecules packing roughly parallel in the planes
between the anions [12]. However, the BETS sites are not equivalent, and the cation molecules
in fact occur in dimers, surrounded roughly isotropically by four nearest-neighbour dimers with
the same orientation. The crystallographic unit cell contains two dimers, and hence contributes
two holes [12]. Although the details of the cation positioning and symmetry are rather different
to those for κ-(BEDT-TTF)2Cu(NCS)2 [1], the overall similarity of the dimer arrangements
leads one to expect a Fermi surface forλ-(BETS)2GaCl4 which is topologically similar to that in
κ-(BEDT-TTF)2Cu(NCS)2. Indeed, the calculated band structure of λ-(BETS)2GaCl4 predicts
a Fermi surface consisting of a quasi-two-dimensional (Q2D) hole pocket (the α-pocket) and
a pair of warped quasi-one-dimensional (Q1D) sheets [12,15]. According to the calculations,
the α-pocket in this case is expected to occupy ∼28–33% of the Brillouin zone [12, 15].
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3. Magnetotransport studies

3.1. Experimental details

Single crystals of approximate dimensions 1 × 0.1 × 0.05 mm3 were synthesized using
electrochemical techniques [12] employing a 1, 1-trichloroethane/1, 1, 2-trichloroethane/
ethanol solvent system [16]. For the purpose of performing four-wire resistance measurements,
12 µm gold leads were attached to the samples using graphite paint. In the pulsed-field
experiments, the resistance was measured using a 10 µA ac current with a frequency of
200 kHz [1,17]. The voltage was measured using a high-speed lock-in amplifier. Temperatures
as low as ∼340 mK were achieved by immersing the sample in liquid 3He inside a plastic
cryostat [17]. Capacitor-driven, ∼40-millisecond-duration pulsed magnetic fields of up to
60 T were provided by the National High Magnetic Field Laboratory (NHMFL), Los Alamos.
Angle-dependent magnetoresistance (AMRO) studies were made using a two-axis rotation
insert [1] in quasistatic magnetic fields of up to 30 T provided by NHMFL, Tallahassee.
In the AMRO experiments, an ac current of 5 µA (frequency 30–80 Hz) was used for the
resistance measurements, and a stable base temperature of 1.4 K was obtained by pumping
on 4He liquid. In both pulsed and quasistatic measurements, the current through the sample
was driven in the interplane b∗-direction; in such a configuration the measured resistance is
accurately proportional to the interplane resistivity component ρzz [1].

3.2. Pulsed-field magnetotransport: Shubnikov–de Haas and magnetic breakdown
oscillations

Figure 1 shows the magnetoresistance of a λ-(BETS)2GaCl4 crystal obtained using pulsed
magnetic fields; the temperature was 340 mK and the magnetic field was applied parallel to
the b∗-direction (i.e. perpendicular to the Q2D planes of the crystal) [11]. After the super-
conducting-to-normal transition, the resistance rises until a series of low-frequency Shubnikov–
de Haas oscillations emerges at about 33 T. These grow in amplitude, until at about 45 T, a
higher-frequency series of oscillations becomes visible. The inset shows a Fourier transform
of the magnetoresistance data. The lower of the two frequencies Fα (believed to originate
from the α-pocket) is 650 ± 5 T. The higher frequency of 4030 ± 25 T, which occurs at fields
above ∼45 T, corresponds to an area in k-space approximately equal to the Brillouin-zone
cross-section; following common usage for other charge-transfer salts [1], we will refer to this
as the β-frequency Fβ . Frequencies equivalent to the Brillouin-zone area are readily observed
in other charge-transfer salts (typically in κ- and α-phase salts of the form (BEDT-TTF)2X) as
a result of magnetic breakdown, whereby electrons tunnel between the Q1D and Q2D sections
of the Fermi surface [1].

The observation of magnetic breakdown in this material is not unexpected, given the
small size of the gap between the Q2D and Q1D Fermi-surface sections predicted by the band-
structure calculations [12]. However, the experimentally observed value of Fα ≈ 650 T is
roughly a factor two smaller than that predicted by the calculations. Discrepancies between
model and experiment of this size are not unknown in charge-transfer salts [18, 19].

3.3. Effective-mass determination

Although the Fermi surface of λ-(BETS)2GaCl4 is Q2D, the relatively small amplitudes of the
oscillations in the magnetoresistance (see figure 1) and the absence of harmonics in the Fourier
transform (inset to figure 1) imply that the Lifshitz–Kosevich (LK) theory should provide an
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Figure 1. Resistance of a λ-(BETS)2GaCl4 crystal as a function of magnetic field, applied parallel
to the b∗-direction; the temperature is 340 mK. The inset shows a Fourier transform of the data
after subtraction of the non-oscillatory background [1]. The peak at 650 T is associated with
the α-pocket; that at 4030 T is due to the breakdown (β-) orbit which encompasses 100% of the
Brillouin zone.

accurate description of the temperature dependence of the oscillations [1]. According to this
theory, the thermal damping factor has the form [20]

RT (B, T ) = χ(m∗/me)T /B

sinh(χ(m∗/me)T /B)
(1)

where χ = 14.69 T K−1 and me is the free-electron mass. On fitting the amplitudes of
the oscillations as a function of temperature (14 different temperatures ranging from 340 mK
to 3.0 K were used), we obtain the effective masses m∗

α = 3.6 ± 0.1 me for Fα and
m∗
β = 6.3 ± 1 me for Fβ .

Table 1 compares the effective masses and the Fermi-surface areas obtained for λ-
(BETS)2GaCl4 and the most heavily studied κ-phase BEDT-TTF superconductor, κ-(BEDT-
TTF)2Cu(NCS)2 [21] (see section 3.2 of reference [1] for similar data on other κ-phase BEDT-
TTF salts). Note that the Fermi-surface parameters of the two salts are remarkably similar.
Moreover, band-structure calculations for both salts predict m∗

α ∼ me [12, 21], whereas
the observed masses are a factor ∼3.5 bigger than this, indicating that interactions which
renormalize the quasiparticle masses [1,21,22] are of similar importance in the two materials.
In both cases, the band-structure calculations [12, 21] predict that m∗

β ≈ 2m∗
α , in reasonable

agreement with the experimental values, and suggesting that the renormalizing interactions
influence both Q1D and Q2D Fermi-surface sections in a similar manner [1, 21]. The only
marked difference between λ-(BETS)2GaCl4 and κ-(BEDT-TTF)2Cu(NCS)2 is the relatively
high value of the Dingle temperature in the former material; the rate of growth of the oscillations
with increasing field (see figure 1) suggests a Dingle temperature of TD ≈ 3.2 ± 0.1 K for
the α-pocket. Typical values of TD for κ-(BEDT-TTF)2Cu(NCS)2 crystals [1,23] (and indeed
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Table 1. Comparison of magnetic quantum oscillation frequencies and effective masses in λ-
(BETS)2GaCl4 and κ-(BEDT-TTF)2Cu(NCS)2. The table shows the effective masses m∗

α and m∗
β

and frequencies Fα and Fβ corresponding to the α- and β-orbits of the Fermi surface.

Salt m∗
α/me Fα (T) m∗

β/me Fβ (T) Tc (K) Source

κ-(BEDT-TTF)2Cu(NCS)2 3.5 600 6.5 3920 10.4 [21]
λ-(BETS)2GaCl4 3.6 650 6.3 4030 5 Present work

κ-phase BETS salts [24]) are often a factor ∼5 smaller than this, indicating that the impurity
scattering rate in λ-(BETS)2GaCl4 is relatively high. The reason for this difference is not
yet clear.

3.4. Angle-dependent magnetoresistance oscillations (AMROs)

Figure 2(a) shows the magnetoresistance of a λ-(BETS)2GaCl4 crystal as a function of θ , the
angle between the applied magnetic field and b∗. Data are shown for a number of different

0 30 60 90 120 150 180

(a)
φ

177o

167o

147o

127o

107o

87o

67o

47o 
(30T)

27o 
(30T)
7o

(30T)

M
ag

ne
to

re
si

st
an

ce
 (a

.u
.)

Angle (deg)
-1.5 -1.0 -0.5 0.0 0.5 1.0 1.5

(b)

O
sc

ill
at

or
y 

co
m

po
ne

nt
 o

f m
ag

ne
to

re
si

st
an

ce

tanθ

Figure 2. (a) Magnetoresistance of a λ-(BETS)2GaCl4 crystal as a function of θ , the angle between
the applied magnetic field and b∗. Data are shown for a number of different φ-angles (listed on the
right of the figure), where φ is azimuthal angle between the plane of rotation and the b∗c-plane.
The lowest three traces were recorded at 30 T; the rest of the data were acquired at 27 T. AMROs
are observed as gentle oscillations of the resistance, periodic in tan θ ; the small peak at 90◦ is due to
the presence of a small number of closed quasiparticle orbits on the warped Fermi-surface sections.
(b) An illustration of the method of locating the AMRO resistance maxima (φ = 7◦ data from (a)).
The slowly varying background magnetoresistance has been fitted to a fourth-order polynomial in
θ and subtracted from the experimental data, leaving the oscillatory component. Peaks periodic in
tan θ are plainly visible.
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φ-angles, where φ is the azimuthal angle between the plane of rotation and the b∗c-plane.
Distinct AMROs are observed; their φ-dependence suggests that they are caused by a Q2D
Fermi-surface section [1,19]. In such a case, maxima in the magnetoresistance occur at angles
θi defined by [1, 19]

b′k‖ tan θi = π
(

i ± 1
4

)

+ A(φ) (2)

where i is an integer, k‖ is the maximum Fermi-wave-vector projection on the plane of rotation
of the field and b′ is the effective interplane spacing (see figure 2(b)). On plotting the positions
of the maxima θi versus i, taking account of the correct sign of the π/4 term [18,19], we obtain
straight lines at all azimuthal angles in accordance with these expectations. On choosing b′ to
be the interlayer spacing (18.4 Å) obtained from x-ray diffraction studies [12, 15], we obtain
the locus for k‖ versus φ shown in figure 3(a).

A locus in the shape of a figure of eight is the usual result for a pocket of elliptical
cross-section [1, 18, 19]. For a pocket of ideal elliptical geometry, the locus of k‖ is given by

k‖ = [k2
x cos2(φ − ξinc) + k2

y sin2(φ − ξinc)]1/2 (3)

where ξinc is the inclination of the major axis of the ellipse with respect to the b∗c-plane. The
parameters kx = 4.86 ± 0.08 nm−1, ky = 1.63 ± 0.01 nm−1 and ξinc = 19◦ ± 5◦ yield the best
fit (solid curves in figure 3(a)).
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Figure 3. (a) The locus of k‖ versus azimuthal angleφ derived from fits of equation (2) to the AMRO
data. Data are points and the curve is a fit to equation (3) with the parameters kx = 4.86±0.08 nm−1,
ky = 1.63 ± 0.01 nm−1, ξinc = 19◦ ± 5◦ and b′ = 18.4 Å. (b) The experimental cross-sectional
shape and orientation of the Q2D Fermi-surface pocket, shown alongside (and to the same scale as)
the Brillouin zone, reciprocal-lattice vectors a∗, c∗ and calculated Fermi surface of reference [15].
The pocket is described by the parameters kx = 2.43 ± 0.04 nm−1, ky = 0.815 ± 0.005 nm−1,
ξinc = 19◦ ± 5◦ and b′ = 2 × 18.4 Å ≈ 36.8 Å (see the text and equation (3)).

The values of kx and ky deduced from the AMRO data indicate an ellipse area cor-
responding to a Shubnikov–de Haas frequency of 2608 ± 60 T. This is almost exactly
four times larger than the value of Fα observed for λ-(BETS)2GaCl4 (see table 1). It is
inconceivable that this value of ∼2608 T could be the actual area of the α-pocket, as it would
then occupy ∼66% of the Brillouin zone. Quantum oscillation measurements remain the
definitive method for obtaining Fermi-surface cross-section areas [1, 20]. On the other hand,
the AMRO measurements shown in figure 2 behave exactly as one would expect for a Q2D
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Fermi-surface pocket [19], with no evidence for any significant misalignment of the sample;
i.e. the fits to equation (2) are straight lines and the peak feature at θ ≈ 90◦ occurs at 90◦ for
all azimuthal angles.

A possible explanation is that the true interlayer spacing (as perceived by the quasiparticles)
is double the unit-cell height, or that there is a modulation of the lattice in the crystallographic
b-direction; this would result in an effective interlayer spacing of b′ = 2 × 18.4 Å ≈ 36.8 Å.
Such a modulation of the lattice could occur in the event of a charge-density-wave (CDW)
or spin-density-wave (SDW) instability; however, there is as yet no other evidence for the
presence of such a ground state (cf. numerous other charge-transfer salts in which CDWs or
SDWs cause extensive modification of the quantum oscillation spectrum [1, 25]). If such a
modulation exists, it is too weak to be picked up by a careful x-ray study at 115 K (Bruker-AXS
SMART6000 CCD, complete sphere of data, sixty-second frames, 0.3◦ scans) [26]. However,
this does not rule out the possibility that doubling occurs at a lower temperature [26].

Whatever the mechanism, a doubling of b′ (see equation (2)) would result in the Fermi-
surface parameters kx = 2.43 ± 0.04 nm−1, ky = 0.815 ± 0.005 nm−1 and ξinc = 19◦ ± 5◦

yielding an ellipse area corresponding to a Shubnikov–de Haas frequency of 652 ± 15 T,
in very good agreement with Fα = 650 ± 5 T derived in section 3.2. Figure 3(b) shows
an elliptical-cross-section Q2D pocket of this size and orientation alongside the most recent
calculation of the Fermi surface [15], based on structural studies carried out at 17 K. The Q2D
pocket measured experimentally is smaller and somewhat more elongated than that suggested
by the calculations; it occupies ≈16% of the Brillouin zone, whereas the Q2D pocket of the
calculation is 28% of the Brillouin-zone area. However, such discrepancies between calculation
and experiment are not without precedent in crystalline organic metals [18, 19, 25].

3.5. Estimation of the interplane transfer integral

We now turn to the small peak in the magnetoresistance component ρzz observed at θ = 90◦

in figure 2. Thus far, we have treated only the Fermi-surface cross-section in the a∗c∗-plane
(see figure 3(b)). However, a small, but finite interlayer transfer integral will lead to a warping
of the Fermi surface in the interlayer b∗-direction (see section 2 of reference [1]). When
the magnetic field is almost exactly in the plane of the warping, a few closed orbits become
possible on the warped sections of the Fermi surface (e.g. on the ‘bellies’ of the warped Q2D
Fermi cylinders) [27, 28, 30]. For certain orientations of an in-plane field, closed orbits will
be possible on both the Q1D sheets and Q2D cylinders of a Fermi surface such as that shown
in figure 3(b); at other orientations of an in-plane field, only the Q2D cylinders will be able to
support closed orbits on their bellies. Such orbits are very effective at averaging the interplane
velocity component vz, and hence lead to a peak in ρzz [28–30].

As the magnetic field is tilted away from the in-plane direction (θ = 90◦), the closed
orbits will cease to be possible when θ = 90◦ ±+, where the angle + is given by

+ (in radians) ≈ v⊥

v‖
(4)

where v⊥ is the maximum interlayer quasiparticle velocity and v‖ is the intralayer component
of the quasiparticle velocity in the plane of rotation of the magnetic field [28–30]. If the
quasiparticle dispersion E(kb) in the interlayer direction is assumed to follow a simple tight-
binding model, E(kb) = −2t⊥ cos(kbb) [31], where t⊥ is the interlayer transfer integral, then

v⊥ = 2t⊥b/h̄ (5)
where we have used the relationship h̄v = ∇kE(k) [31] to obtain v⊥ from E(kb) [30].
Equations (4) and (5) therefore show that there is a direct proportionality between 2+, the
angular width of the peak in ρzz, and the interlayer transfer integral, t⊥.
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Figure 4 shows how the angular width 2+ of the peak in ρzz is defined; the limits of the
peak are defined by the intersections of extrapolations of the background magnetoresistance
and the edges of the peak6. Similar data for κ-(BEDT-TTF)2Cu(NCS)2 from reference [30]
are plotted for comparison; note how the peak at 90◦ is much narrower. Given the similarity of
their intralayer Fermi-surface properties (see table 1), this comparison immediately suggests
a much smaller t⊥ in κ-(BEDT-TTF)2Cu(NCS)2 than in λ-(BETS)2GaCl4.

!
!"

Ω
#

θ

Figure 4. Peaks in the interplane resistance Rzz (proportional to ρzz) close to θ = 90◦ in λ-
(BETS)2GaCl4 (thick line; T = 1.4 K, B = 30 T; present work) and κ-(BEDT-TTF)2Cu(NCS)2
(fine line; T = 520 mK, B = 42 T; reference [30]). In the case of κ-(BEDT-TTF)2Cu(NCS)2,
the rapid oscillations at the edges of the figure are angle-dependent magnetoresistance oscillations
(AMROs). The fine lines superimposed on the λ-(BETS)2GaCl4 data show how the full width of
the peak is defined.

In order to obtain a quantitative estimate of t⊥, it is necessary to use reliable values of
v‖ [28, 30]. Figure 3(b) suggests that when the in-plane magnetic field is close to the a∗-
direction, it is likely that both Q1D and Q2D Fermi-surface sections will be able to support
closed orbits; conversely, when the magnetic field is well away from this orientation, only the
Q2D cylinder will be able to support closed orbits. As most of the accurate information deduced
from the experiments in the previous sections concerns the Q2D Fermi-surface section, we
concentrate on the range of φ over which it alone will determine the peak at θ = 90◦.

We assume an effective-mass-tensor approximation for the in-plane motion on the Q2D
Fermi-surface section [1]:

E = h̄2k2
x

2m1
+

h̄2k2
y

2m2
. (6)

Here m1 and m2 are effective masses for linear motion in the x- and y-directions. The cyclotron
effective mass in such an approximation is m∗ = (m1m2)

1/2 [31]. Using the lengths of the
axes of the elliptical cross-section of the Q2D Fermi-surface section derived from the AMROs

6 Alternative methods, such as the fitting of more complex functions to the background magnetoresistance and peak
yielded negligible gains in accuracy and reproducibility, and were more time-consuming.
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(2.43 nm−1 and 0.815 nm−1; see the previous section—we have divided by 2 to account for
apparent doubling of the unit-cell height) and m∗ = 3.6 me (table 1), we obtain

m1

m2
=

(

2.43
0.815

)2

and m1m2 = (3.6 me)
2 = 12.96 m2

e

yielding m1 = 10.73 me, m2 = 1.207 me and EF ≈ 20.95 meV (cf. m1 = 10.59 me,
m2 = 1.177 me and EF ≈ 18.4 meV for κ-(BEDT-TTF)2Cu(NCS)2 [30]). Hence, using
h̄v = ∇kE(k) [31], and the constraint E = EF, the velocities v‖(φ) may be derived for the
Q2D Fermi-surface section.

The widths 2+ derived from data such as those in figure 4 are plotted as a function of
φ in figure 5. The figure also shows the prediction of equation (4) using v‖ derived from
equation (6); the only fit parameter is t⊥ (see equation (5)). We have chosen to fit data for
ranges of φ at which the Q2D pocket is expected to be the sole provider of closed orbits for
in-plane magnetic fields; i.e. we avoided field orientations close to −a∗ (φ = 90◦) and a∗

(φ = 270◦) (dashed lines) at which the Q1D sheets might also be expected to provide closed
orbits in an in-plane field (see figure 3(b)). (Note that the experimental data show a strong
peak close to φ = 90◦ and 270◦ (instead of the minimum predicted by the model) suggesting
that the Q1D sections are indeed the dominant cause of the peak in ρzz at these orientations.)
The fit yields v⊥ ≈ 1200 m s−1, so7 t⊥ ≈ 0.21 meV. A similar procedure has been carried out
for κ-(BEDT-TTF)2Cu(NCS)2, giving an interplane transfer integral of t⊥ ≈ 0.04 meV [30].
Therefore, the interplane transfer integral of λ-(BETS)2GaCl4 is a factor ∼5 bigger than that
in κ-(BEDT-TTF)2Cu(NCS)2.
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Figure 5. Full widths of peaks in ρzz close to θ = 90◦ for λ-(BETS)2GaCl4 (points) plotted as
a function of φ. The curve is given by equations (4), (5) and (6), with t⊥ = 0.21 meV. Note that
we have chosen to fit data for ranges of φ at which the Q2D pocket is expected to be the sole
provider of closed orbits for in-plane magnetic fields; i.e. we avoided field orientations close to
−a∗ (φ = 90◦) and a∗ (φ = 270◦) (dashed lines) at which the Q1D sheets might also be expected
to provide closed orbits in an in-plane field (see figure 3(b))

7 The value t⊥ = 0.21 meV assumes that the interplane distance b which dominates the interlayer transport is that
given by x-ray crystallography, 18.4 Å.
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3.6. Summary

In summary, the magnetoresistance measurements indicate that the Fermi surface of λ-
(BETS)2GaCl4 bears a strong resemblance to that of κ-(BEDT-TTF)2Cu(NCS)2 within the
highly conducting Q2D planes. Moreover, the effective masses of the two salts are almost
identical and the renormalizing interactions are probably of similar strength.

The width of the peak in the magnetoresistance close to θ = 90◦ suggests that the interplane
transfer integral of λ-(BETS)2GaCl4 is approximately five times bigger than that of κ-(BEDT-
TTF)2Cu(NCS)2. This implies that λ-(BETS)2GaCl4 is a less two-dimensional material.

4. Penetration-depth measurements

4.1. Experimental details

In the current experiments, the penetration depth was inferred by placing the superconducting
sample in a small coil which is the inductive element of a resonant tank circuit [32, 33]. The
exclusion of flux from the sample, and hence the coil, decreases the inductance of the circuit;
consequently the resonant angular frequency, ω = 1/

√
LC, will increase. The well-known

properties of inductors [34] lead to+Aφ/AC = +L/L, where+Aφ is the change in flux area,
AC is the area of the measurement coil, +L is the change in inductance and L is the total
inductance. For small changes in inductance, +L/L0 = 2+f /f0, where +f is the change
in resonant frequency f0 is the initial resonant frequency and L0 is the initial inductance.
Through simple geometrical relations it can be shown that [35]

+Aφ

AC
= 2rs+λ−+λ2

R2
(7)

where +λ is the change in penetration depth, R is the effective radius of the coil, rs is the
effective sample radius. Simple estimates for the sample sizes used in the current experiments
show that the second-order term is negligible [35], so

+λ = R2

rs

+f

f0
. (8)

The λ-(BETS)2GaCl4 samples used in the current study have a needle-like geometry [13];
a typical example had approximate dimensions 2 × 0.170 × 0.084 mm3. In order to maximize
the filling factor and cross-sectional area, the coil was made rectangular, with an effective
area of 1.34 mm2; for the sample mentioned above, the effective sample radius is half the
shortest dimension (0.042 mm) (note that the long axis of the crystal is perpendicular to the
coil axis). Calibration was achieved by placing a spherical superconducting sphere of known
size in the coil [2]. The sample was orientated in the coil such that the oscillating magnetic field
was parallel to the crystallographic b∗-direction, i.e. perpendicular to the highly conducting
planes [11]. The tank-circuit capacitance was provided by a 30 pF mica capacitor, and the
circuit was driven at f ≈ 25 MHz by a tunnel-diode oscillator [32]8. The sample and coil
were placed in a 3He cryostat or dilution refrigerator. Quasistatic magnetic fields of up to 30 T
were applied parallel to b∗.

Figure 6 shows+λ for a λ-(BETS)2GaCl4 crystal (deduced from the frequency of the tank
circuit using equation (8)) as a function of temperature. The sharp rise in penetration between

8 It should be emphasized that this measurement technique represents a very weak perturbation of the sample. The
radio-frequency (rf ) magnetic field in the coil is ∼1 µT, several orders of magnitude smaller than typical applied
fields. Moreover, the data were taken at a frequency of 25 MHz, whilst a BCS estimate of the pair-breaking frequency
in λ-(BETS)2GaCl4 is ∼160 GHz [35] i.e. the measurement frequency is insufficient to cause pair breaking.
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Figure 6. Change in penetration depth versus temperature at zero field in λ-(BETS)2GaCl4. Note
that the cryostat used could only provide controlled, slow sweeps of temperature down to 4.2 K
(data shown as a continuous curve). Below this, data are recorded at fixed, stable temperatures
(points). The error bars on the points give typical uncertainties, valid across the whole temperature
range shown.

4.5 K and 5.1 K gives a very clear indication of the superconducting-to-normal transition;
above this temperature,+λ ≈ 80 µm (i.e. comparable to the shortest dimension of the sample),
indicating that the radio-frequency fields penetrate the whole crystal once it is in the normal
state. This is in agreement with estimates of the low-temperature normal-state conductivity for
λ-(BETS)2GaCl4 [12], which lead one to expect an in-plane skin depth δ ∼ 100 µm [36, 37].

4.2. Measurements at low magnetic fields: determination of pinning parameters

Wu and Sridhar [38] have treated the repulsively interacting flux lines in a type-II super-
conductor as periodic, damped harmonic oscillator potentials modulated by a rf field. The
physical justification of their model is that the repulsive interaction of the fluxoids causes the
Abrikosov lattice [39, 40] to resist higher flux densities in a manner analogous to the way in
which a two-dimensional network of springs resists compression. In such a model, the Labusch
pinning potential parameter α corresponds to the restoring force on fluxoids displaced slightly
by the current density J induced by the radio-frequency field [38]:

η
dx

dt
+ αx = φ0J.

Here x is the fluxoid displacement, η is a damping parameter andφ0 is the flux quantum [38]. In
other words, a small perturbation displaces the fluxoid from its equilibrium position against the
restoring force provided by the repulsion from neighbouring fluxoids and the pinning potential.

In the limit of small magnetic field (H , Bc2), the damping due to fluxoid viscous
drag [38,41] may be neglected, leading to a linear relationship between changes in the square
of the penetration depth +λ2 and the magnetic induction B inside the sample [38]:

+λ2 = φ0

µ0α(T )
B(H). (9)

Figure 7 (inset) shows the field dependence of +λ2 at a temperature of T = 700 mK. The
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Figure 7. Inset: the determination of the Labusch parameter α(T ) by a straight-line fit to low-field
+λ2 versus µ0H data (T = 700 mK). Main figure: experimental values of α versus temperature
(points); the curve is a fit to the two-fluid model expression.

sample is well inside the mixed state for fields above µ0H ≈ 0.01 T, so B = µ0H ; hence, the
linear dependence predicted by equation (9) fits the data well, yielding a Labusch parameter
of α(700 mK) ≈ 1.4 N m−2.

Data similar to those in the inset of figure 7 were acquired at a range of temperatures; the
resulting values of α are plotted in figure 7 (main figure) as a function of temperature. The
solid-line fit through the data in figure 7 is the temperature dependence predicted from the
two-fluid Gorter–Casimir [40, 42] model,

α ∝
[

1 −
(

T

Tc

)4
]

. (10)

Figure 7 also highlights some of the differences between organic superconductors and the
‘high-Tc’ cuprates. As T → 0, the Labusch parameter of λ-(BETS)2GaCl4 tends to 1.5 N m−2,
almost four orders of magnitude smaller than that of YBa2Cu3O7 [38]. Moreover, whereas the
two-fluid model is able to describe the λ-(BETS)2GaCl4 data with a fair degree of accuracy, the
pinning-force parameter of YBa2Cu3O7 has been shown to follow the temperature dependence
(1 − (T /Tc)

2)2 [38].

4.3. Measurements at high magnetic fields: deviation from Campbell penetration-depth
behaviour and the upper critical field

Figure 8 shows the measured change in penetration depth +λ for λ-(BETS)2GaCl4 at
intermediate fields and a temperature of 700 mK.+λ varies approximately as

√
H , as expected
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Figure 8. The change in penetration-depth signal versus field for λ-(BETS)2GaCl4at 700 mK. The
deviation from the Campbell penetration-depth behaviour is indicated as H ∗ while the saturation
of the +λ signal indicates Hc2, determined from the straight-line intercepts.

in the Campbell scenario for fluxoid motion [38, 43]. However, above a field which we label
µ0H

∗, +λ deviates from the
√

H dependence; this implies that the periodic harmonic well
models [38, 44] are no longer applicable. At fields above µ0H

∗, +λ follows the approximate
field dependence H 2, until the penetration depth saturates.

The identification of the upper critical field in organic superconductors from conductivity
data has been the subject of considerable debate [45, 46]; the transition is intrinsically broad,
and phenomena such as a pronounced ‘hump’ in the resistivity and negative magnetoresistance
are observed close to Hc2 [1]. (Note that similar complications also afflict the ‘high-Tc’ cuprates
[47, 48].) Recently, a consensus has emerged whereby most of the transition region between
zero resistance and normal-state magnetoresistance is regarded as a property of the mixed
phase (see references [33, 46] and references therein); Hc2 is then defined as the intersection
of the extrapolations of the transition region and the normal-state magnetoresistance [33].

In penetration-depth measurements, the broadening is less severe since the measurement
is not dependent on a macroscopic net current flow across the sample [38, 46]. The pinned
fluxoids probed by rf fields do not experience as large an electric field gradient and hence the
dissipation associated with the normal core is reduced [38, 46]. Nevertheless, the transition
is still somewhat broadened, and so we follow the same spirit as the convention used in
resistivity studies [33] and the GHz penetration-depth studies of reference [46], defining Hc2

as the intersection of extrapolations of the penetration-depth curves below and above the point
at which the saturation occurs (see figure 8). We can be confident that the saturated behaviour
is characteristic of the normal state, as it continues up to at least 30 T without further features.
This strongly suggests that the whole of the sample is penetrated by the rf fields in the normal
state, as suggested in section 4.1.

The values of Hc2 and H ∗ deduced from the penetration-depth measurements are shown
as functions of temperature in figure 9. Four different λ-(BETS)2GaCl4 samples, taken from
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Figure 9. The notional phase diagram of λ-(BETS)2GaCl4 showing the upper critical field
(triangles) and H ∗, marking the inflection points in the penetration depth (diamonds). The
quasistatic field is applied parallel to b∗, i.e. perpendicular to the quasi-two-dimensional planes of
the sample. Points from four different samples are shown, often overlaying each other. The upper
solid curve is Hc2 ∝ (T ∗ − T )1/2; the dashed curve is Hc2 ∝ (Tc2 − T ). The lower solid curve is
a fit of the two-fluid model expression for the flux-line-lattice melting.

four separate growth batches, were used in the study. There were negligible differences in
their behaviour, and the data from the four samples in figure 9 overlie each other, suggesting
that the characteristic fields measured are intrinsic properties of λ-(BETS)2GaCl4. We shall
return to the temperature dependence of Hc2 in a later section.

4.4. Flux-lattice melting at H ∗

We now turn to the change in behaviour which occurs at the field H ∗ (see figure 8). We
attribute the change at H ∗ to flux-line-lattice melting, as H ∗ follows the (Tc −T )2 dependence
expected from the Gorter–Casimir two-fluid model [42].

Additional support for this attribution comes from considering microscopic models of the
melting process. Houghton et al [49] have considered the elastic moduli of the flux-line lattice
and proposed that melting occurs when the mean thermal flux-line displacement d(T ) is a
substantial fraction of the Abrikosov lattice parameter / = (2φ0/

√
3B)1/2, i.e., d(T ) ≈ cL/.

Here cL is the Lindemann parameter [50], a function used very generally in the description of
solid–liquid transitions; typically cL ∼ 0.1–0.2. The explicit expression for d(T ) is

d(T ) =

√

1
2π

(

Gi

γ 2

)1/2
t

(1 − t)1/2

b

(1 − b)

(

4(
√

2 − 1)

(1 − b)1/2
+ 1

)

/2 (11)

where t = T/Tc and b = B/Bc2. The parameter

Gi = (16π3κ4(kBT )2)/(φ3
0Hc2(0))

describes the importance of fluctuations in a given system; γ is the anisotropy term defined by

γ ≡ ξxy

ξz
(12)
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with ξxy and ξz being the in-plane and interplane coherence lengths respectively. κ is another
Ginzburg–Landau parameter giving the ratio of penetration depth to the coherence length for
a particular orientation [40, 49]. In this case we require κ = λ/ξ⊥. Using Ginzburg–Landau
theory in the limit9 T → 0 yields ξ⊥ ≈ 1.4 nm and λ ≈ 150 nm for λ-(BETS)2GaCl4, resulting
in κ ≈ 107.

In this model, the melting field at each temperature can be interpreted as the point at
which the product of cL and the lattice spacing is roughly equal to the average flux-line
displacement. Thus, an increasing field reduces the average intervortex spacing, thereby
facilitating melting [49]. Substituting µ0H

∗ ≈ 1 T at T = 700 mK and κ = 107 into the
above equations yields a flux-line displacement of approximately 6.0 nm, roughly 12% of the
Abrikosov lattice spacing. This implies that cL ≈ 0.12, a value entirely typical of a solid–liquid
transition [50].

In isotropic superconducting systems, the melting of the flux-line lattice occurs so close
to Hc2 as to be indistinguishable from it [40]. However, for materials such as λ-(BETS)2GaCl4
(and in κ-(BEDT-TTF)2Cu(NCS)2; see references [53,56]), the large anisotropy of the super-
conducting properties permits the melting line to be observed over extended regions of the
H–T phase diagram, well clear of Hc2.

5. Discussion: comparison of λ-(BETS)2GaCl4 with κ-(BEDT-TTF)2Cu(NCS)2;
dimensional crossover

Having seen in section 3 that the Fermi surface of λ-(BETS)2GaCl4 and that of κ-(BEDT-
TTF)2Cu(NCS)2 bear some striking similarities within the Q2D planes but have interplane
transfer integrals differing by a factor ∼5, it is interesting to compare their superconducting
properties.

The work of Belin et al [46] has shown that conventional resistivity measurements can
yield unrepresentative values for the upper critical field of κ-(BEDT-TTF)2Cu(NCS)2 (see
also [48,58]); the difficulties result from the dissipative mechanisms mentioned in section 4.3,
which act to broaden the resistive transition [1, 45]. Thermal conductivity, magnetization
and penetration-depth measurements seem to be less susceptible to these problems and give
a better reflection of the true Hc2 [46]. We have therefore compiled the Hc2(T ) plot in
figure 10 using available thermal conductivity [46], magnetization [53, 54] and MHz [52]
and microwave (12–25 GHz) [46] penetration measurements. There is some scatter amongst
the data from different measurements, but all suggest that (∂Hc2/∂T ) increases in magnitude
as T increases, and in fact the power law Hc2 ∝ (Tc − T )2/3 is quite successful in describing
the data (figure 10).

A material made up of weakly coupled superconducting planes may transform from a
three-dimensional system to what is in effect a series of two-dimensional superconductors as
the interlayer coherence length decreases with decreasing temperature [60]. The dimensional
crossover occurs when the interplane coherence length ξz becomes shorter than the interplane
spacing of the quasi-two-dimensional layers. Muon-spin-rotation studies [55] have shown
that this transition occurs in κ-(BEDT-TTF)2Cu(NCS)2 at magnetic fields ∼7 mT, i.e. three
orders of magnitude smaller than typical values of Hc2 (figure 10). This strongly suggests that
the variation of Hc2 shown in figure 10 is typical of a quasi-two-dimensional superconductor
consisting of weakly coupled layers [53, 56, 59].

9 This procedure was carried out using equations (12), (13) and (14) in the limit T → 0 [51]. See section 5 for a
discussion of some of the difficulties inherent in this procedure.
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Figure 10. Critical fields in κ-(BEDT-TTF)2Cu(NCS)2, plotted on logarithmic (a) and linear (b)
field scales. The data for Hc2 comprise filled triangles (MHz penetration data obtained using
the apparatus described in the current paper [52]), filled circles (microwave penetration studies;
reference [46]; errors in values of µ0Hc2 typically ±0.5 T), open circles (thermal conductivity
data from reference [46]; errors not given) and shaded diamonds (magnetization data; the lowest-
temperature point was determined by examining the attenuation of de Haas–van Alphen oscillations
[53] and the higher-temperature points are from the scaling studies in reference [54]). The solid
curve is proportional to (Tc − T )2/3, with Tc = 9.1 K. The triangles show the irreversibility field
from magnetization [53]; the filled squares and stars represent 2D melting from magnetometry
and GHz studies [56] (see also the NMR data of reference [57]). The hollow squares are from
muon-spin-rotation studies [55] and denote the 3D–2D transition.

Figure 9 shows that the upper critical field of λ-(BETS)2GaCl4 (conducting planes
perpendicular to the applied magnetic field) has a linear region Hc2 ∝ (Tc −T ) that spans from
Tc to approximately 1.9 K. Below 1.9 K, a definite change in the slope of the upper critical
field occurs, and Hc2 begins to follow the power law Hc2 ∝ (T ∗ −T )ζ , with T ∗ a fit parameter;
powers ζ in the range 0.5–0.7 provide an adequate fit to the data.

The behaviour of Hc2 in λ-(BETS)2GaCl4 at temperatures below 1.9 K is therefore
very similar to that of Hc2 in κ-(BEDT-TTF)2Cu(NCS)2 over the whole temperature range
shown in figure 10, and is thus characteristic of a two-dimensional superconductor with
weakly coupled layers [56, 59]. On the other hand, the linear variation of Hc2 in λ-
(BETS)2GaCl4 at higher temperatures follows the expectations of Ginzburg–Landau theory
for three-dimensional superconductors [40, 63]. We therefore attribute the change in gradient
at 1.9 K to dimensional crossover from quasi-two-dimensional (low temperatures) to three-
dimensional (high temperatures). As we shall now show, this is entirely consistent with
estimates of the interplane coherence length in λ-(BETS)2GaCl4.

The dependence on the magnetic field orientation of Bc2 [35] in λ-(BETS)2GaCl4 is
qualitatively similar to the predictions of the Ginzburg–Landau anisotropic effective-mass
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approximation [40, 61, 62, 64]

Bc2(θ) = Bc2(θ = 0)
√

cos2(θ) + γ−2 sin2(θ)

(13)

where θ is the angle between b∗ and the applied magnetic field and γ has been defined in
equation (12). Using Ginzburg–Landau theory [40], the in-plane coherence length may be
estimated from the upper critical field when the magnetic field is parallel to b∗:

Hc2(θ = 0) = φ0

2πξ 2
xy

. (14)

Fits of the θ -dependence of Hc2 at T = 1.75 K [51, 64] (the temperature at which the
change in gradient in figure 9 occurs) yield ξz ≈ 1.85 nm, almost identical with the interplane
spacing, and supporting our assertion that the change in gradient in figure 9 at 1.9 K is associated
with a dimensional crossover.

Dimensional crossovers with the magnetic field applied perpendicular to the Q2D planes
have been observed in artificial Q2D superconducting structures [65, 66] and in organic
superconductors such as κ-(BEDT-TTF)2Cu(NCS)2 [55,56]; however, in the majority of these
cases, the effect of the crossover is observed at magnetic fields less than Hc2. λ-(BETS)2GaCl4
is perhaps unique in providing the correct anisotropy for the crossover to be observed in the
behaviour of Hc2(T ).

In section 3.5 we demonstrated that the interplane transfer integral of λ-(BETS)2GaCl4 is
a factor ∼5 larger than that of κ-(BEDT-TTF)2Cu(NCS)2. The greater ‘three-dimensionality’
of the band structure of λ-(BETS)2GaCl4 compared to κ-(BEDT-TTF)2Cu(NCS)2 obviously
manifests itself in the superconducting behaviour (compare figures 9 and 10); whereas λ-
(BETS)2GaCl4 exhibits 2D–3D dimensional crossover in its Hc2(T ) behaviour, Hc2(T ) in
κ-(BEDT-TTF)2Cu(NCS)2 is entirely characteristic of a Q2D superconductor.

6. Summary

In summary, we have measured the Fermi-surface topology of the organic superconductor
λ-(BETS)2GaCl4 using Shubnikov–de Haas and angle-dependent magnetoresistance oscill-
ations. The data show that the Fermi-surface topology of λ-(BETS)2GaCl4 is very similar
indeed to that of the most heavily studied organic superconductor, κ-(BEDT-TTF)2Cu(NCS)2,
except in one important respect; the interplane transfer integral of λ-(BETS)2GaCl4 is a factor
∼5 larger than that in κ-(BEDT-TTF)2Cu(NCS)2. The increased three-dimensionality of λ-
(BETS)2GaCl4 is manifested in radio-frequency penetration-depth measurements, which show
a clear dimensional crossover in the behaviour of Hc2. The radio-frequency measurements
have also been used to extract the Labusch parameter determining the fluxoid interactions as
a function of temperature, and to map the flux-lattice melting curve.

We have observed a discrepancy between the angle-dependent magnetoresistance
oscillation and Shubnikov–de Haas data which suggests that the true unit-cell height at low
temperatures is double that inferred from x-ray studies. At present, this has not been detected
by other techniques.

It is interesting to note that the anisotropies and Ginzburg–Landau parameters of
the organic superconductors λ-(BETS)2GaCl4 (this work) and κ-(BEDT-TTF)2Cu(NCS)2

[53, 55, 56] span the typical values found in ‘high-Tc’ cuprates such as YBCO and BISCCO
[40]. However, as the current work has shown, in contrast to the case for the cuprates, the
Fermi-surface topologies and complete phase diagrams of organic superconductors such as
λ-(BETS)2GaCl4 and κ-(BEDT-TTF)2Cu(NCS)2 can be mapped out in detail using accessible



8342 C Mielke et al

laboratory fields. Moreover, details of the band structure in the organics can be related
directly to the superconducting properties. The availability of a large number of organic
superconductors of varying dimensionality and band structure [1,23] should potentially allow
very stringent experimental tests of models of superconductivity in layered materials to be
carried out.
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Appendix. A note on the radio-frequency response

In the current paper we have extracted parameters which describe the superconducting state of
λ-(BETS)2GaCl4 under the assumption that all of the apparent changes in the penetration of
the radio-frequency field are due to the variation of λ. It is therefore very important to assess
whether this assumption is valid. Moreover, as little has been written in the literature about the
radio-frequency techniques employed, it is useful to summarize the artefacts which can affect
the experimental data. For future reference, we hope that it is also useful to provide estimates
of some of the parameters used in the theory used to model experimental data [44].

Coffey and Clem [44] have treated the behaviour of a superconductor in a rf field over a
broad frequency range. Using their approach, the contributions to the penetration-depth signal
from surface-impedance and skin-depth effects can be evaluated as the temperature or applied
magnetic field are varied. The model defines boundaries at which the surface-impedance and
skin-depth effects become non-negligible; these are set by evaluating the flux creep factor [44].

The flux creep factor ε is determined by ν, the ratio of the fluxoid barrier height U0 to
the typical thermal energy kBT , ν = U0/(2kBT ). The flux creep factor is then determined
by ε = 1/I0(ν)

2, where I0 is a zeroth-order modified Bessel function of the first kind [44]. ε
parametrizes the degree to which thermal effects assist the motion of fluxoids.

In the limit of large ε (i.e. ε ∼ 1), thermal excitation causes the behaviour of fluxoids to
approach that of completely unpinned fluxoids. In this case, the complex effective resistivity
(ρ̃v(ω)) becomes a factor contributing to the measured change in penetration depth. ρ̃v(ω) [44]
is given by the expression

ρ̃v(ω) = ε + (ωτ )2 + i(1 − ε)ωτ
1 + (ωτ )2

ρf (A.1)

whereρf = Bφ0/η is the flux flow resistivity andωτ represents the product of the measurement
frequency and the relaxation time of the normal-state quasiparticles.

An order-of-magnitude estimate of U0 is given by considering the energy at which the
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harmonic oscillator potentials of neighbouring fluxoids cross, yielding [38]

U0 ≈ 2
π2
αL3.

The characteristic length L [38] will be roughly equal to the Abrikosov lattice spacing, L = /,
so the pinning-well barrier height U0 can be estimated using

U0 = 2α
π2

(

2√
3

φ0

B

)3/2

. (A.2)

Equation (A.2) shows that U0 decreases as the field B increases, so the surface-impedance
and skin-depth effects will be most prominent at high magnetic fields. Within the super-
conducting state, the highest field (i.e. worst-case scenario) at which we make quantitative
deductions about vortex behaviour is µ0H

∗, the field at which the penetration depth indicates
a divergence from the Campbell regime. Substituting the value for 700 mK, we obtain
U0 ∼ 16 K. At this field and temperature, ν ∼ 4, leading to ε ∼ 0.005.

Equation (A.1) also shows that the value of ωτ contributes to the complex resistivity.
Taking a frequencyω/2π ≈ 25 MHz from the current experiments and τ from measurements of
the normal-state resistivity [12] (or the penetration depth: see figure 6), we obtainωτ ∼ 0.005.
Therefore, the fact that both ε and ωτ are ,1 indicates that the surface-impedance and skin-
depth effects have negligible impact [44] on the experiments on λ-(BETS)2GaCl4 reported in
this work.
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